\qquad
\qquad
\qquad

Lesson Inverses of Simple Quadratic and Cubic Functions Practice and Problem Solving: A/B

Graph the function $f(x)$ for the domain $x \geq 0$. Then graph its inverse, $f^{-1}(x)$, and write a rule for the inverse function.

1. $f(x)=0.25 x^{2}$

2. $f(x)=x^{2}+3$

Graph the function $f(x)$. Then graph its inverse, $f^{-1}(x)$, and write a rule for the inverse function.
3. $f(x)=0.5 x^{3}$

4. $f(x)=x^{3}-2$

The function $d=4.9 t^{2}$ gives the distance, d, in meters, that an object dropped from a height will fall in \boldsymbol{t} seconds. Use this for Problems 5-6.
5. Express t as a function of d.
6. Find the number of seconds it takes an object to fall 150 feet. Round to the nearest tenth of a second.

Unit 5 Radical Functions, Expressions, and Equations

MODULE 10 Radical Functions

LESSON 10-1

Practice and Problem Solving: A/B

1. $f^{-1}(x)=2 \sqrt{x}$

2. $f^{-1}(x)=\sqrt{x-3}$

3. $f^{-1}(x)=\sqrt[3]{2 x}$

4. $f^{-1}(x)=\sqrt[3]{x+2}$

5. $t=\sqrt{\frac{d}{4.9}}$
6. 5.5 seconds

Practice and Problem Solving: C

1. $f^{-1}(x)=\sqrt{10 x}$
2. $f^{-1}(x)=\sqrt{\frac{x+7}{2}}$
3.1

3. $f^{-1}(x)=2 \sqrt[3]{x}$
4. $f^{-1}(x)=\frac{1}{3} \sqrt[3]{x+1}$
5.

7. $a(T)=\sqrt[3]{T^{2}} ; \quad T(a)=\sqrt{a^{3}}$
8. $a(T)=\sqrt[3]{T^{2}}=\sqrt[3]{(247.9)^{2}}=$
$\sqrt[3]{61454.41} \approx 39.5$. Pluto's mean distance from the Sun is approximately 39.5 astronomical units.
9. $T(a)=\sqrt{a^{3}}=\sqrt{(0.723)^{3}} \approx$ $\sqrt{0.37793} \approx 0.61$. Venus's orbital period is approximately 0.61 years.

