Algebra 2	Name		ID: 1
2016 Kuta Software LLC.	All rights reserved.		
12.1 warm up part II		Date	Period

Determine if the sequence is arithmetic. If it is, find the common difference, the explicit formula, and the recursive formula.

1) 4, 11, 18, 25, ...

2) -1, $-\frac{3}{2}$, -2, $-\frac{5}{2}$, ...

Given the recursive formula for an arithmetic sequence find the first five terms and the explicit formula.

3)
$$a_n = a_{n-1} + 9$$

 $a_1 = -26$

Given the explicit formula for an arithmetic sequence find the common difference, the first five terms, and the recursive formula.

4)
$$a_n = 1 + (n-1) \cdot -7$$

Find the common difference, the 52nd term, the explicit formula, and the recursive formula.

Given a term in an arithmetic sequence and the common difference find the explicit formula and the recursive formula.

6)
$$a_{31} = -210, \ d = -6$$

Given two terms in an arithmetic sequence find the common difference, the explicit formula, and the recursive formula. (Notes)

7)
$$a_{12} = -84$$
 and $a_{31} = -274$
8) $a_{19} = 130$ and $a_{32} = 195$

Answers to 12.1 warm up part II (ID: 1)

1) Common Difference: d = 72) Common Difference: $d = -\frac{1}{2}$ Explicit: $a_n = 4 + (n-1) \cdot 7$ Recursive: $a_n = a_{n-1} + 7$ Explicit: $a_n = -1 + (n-1) \cdot -\frac{1}{2}$ $a_1 = 4$ Recursive: $a_n = a_{n-1} - \frac{1}{2}$ $a_1 = -1$ 3) First Five Terms: -26, -17, -8, 1, 10 4) Common Difference: d = -7Explicit: $a_n = -26 + (n-1) \cdot 9$ First Five Terms: 1, -6, -13, -20, -27 Recursive: $a_n = a_{n-1} - 7$ $a_1 = 1$ 6) Explicit: $a_n = -30 + (n-1) \cdot -6$ 5) Common Difference: d = -7 $a_{52} = -381$ Recursive: $a_n = a_{n-1} - 6$ Explicit: $a_n = -17 - 7n$ $a_1 = -30$ Recursive: $a_n = a_{n-1} - 7$ $a_1 = -24$ 7) Common Difference: d = -108) Common Difference: d = 5Explicit: $a_n = 36 - 10n$ Explicit: $a_n = 35 + 5n$ Recursive: $a_n = a_{n-1} - 10$ Recursive: $a_n = a_{n-1} + 5$ $a_1 = 26$ $a_{1} = 40$