\qquad
\qquad

${ }_{\text {LEsson }}^{\text {L2-3 }}$ Modeling with Linear Systems
 Practice and Problem Solving: A/B

Write a system of equations to solve each problem.

1. For a small party of 12 people, the caterer offered a choice of a steak dinner for $\$ 12.00$ per meal or a chicken dinner for $\$ 10.50$ per meal. The final cost for the meals was $\$ 138.00$. How many of each meal was ordered?

Equations: \qquad
Solution: \qquad
2. A clubhouse was furnished with a total of 9 couches and love seats so that all 23 members of the club could be seated at once. Each couch seats 3 people and each love seat seats 2 people. How many couches and how many love seats are in the clubhouse?

Equations: \qquad
Solution: \qquad
3. A small art museum charges $\$ 5$ for an adult ticket and $\$ 3$ for a student ticket. At the end of the day, the museum had sold 89 tickets and made $\$ 371$. How many student tickets and how many adult tickets were sold?

Equations: \qquad
Solution: \qquad
4. Cassie has a total of 110 coins in her piggy bank. All the coins are quarters and dimes. The coins have a total value of $\$ 20.30$. How many quarters and how many dimes are in the piggy bank?

Equations: \qquad
Solution: \qquad

Write a system of inequalities and graph them to solve the problem.

5. Jack is buying tables and chairs for his deck party. Tables cost $\$ 25$ and chairs cost $\$ 15$. He plans to spend no more than $\$ 285$ and buy at least 16 items. Show and describe the solution set, and suggest a reasonable solution to the problem.

Equations: \qquad
Solution: \qquad

7.

a. $(-1,0)$ and $(-3,2)$
b. $(0,-3)$ and $(4,0)$
8.

a. $(0,0)$ and $(1,2)$
b. $(1,0)$ and $(-4,3)$
9. $w+c>5$
$49 w+100 c<400$

Reading Strategies

1. $\left\{\begin{array}{l}2 x+2 y \leq 30 \\ x>8\end{array}\right.$
2.

3. $I=10 \mathrm{ft}, w=5 \mathrm{ft}$ and $I=11 \mathrm{ft}, w=4 \mathrm{ft}$

Success for English Learners

1. $(-3,1)$ is a solution because it lies in the shaded region for both inequalities.
2. $(4,2)$ is not a solution because it does not lie in the shaded region for both inequalities.

LESSON 12-3

Practice and Problem Solving: A/B

1. $s+c=12 ; 12 s+10.5 c=138 ; 8$ steak, 4 chicken
2. $c+I=9 ; 3 c+2 I=23 ; 5$ couches, 4 loveseats
3. $a+s=89 ; 5 a+3 s=371 ; 52$ adults, 37 students
4. $q+d=110 ; 0.25 q+0.10 d=20.30$; 62 quarters, 48 dimes
5. $t+c \geq 16 ; 25 t+15 c \leq 285$; solution is all the points in the overlap region; 4 tables, 12 chairs

Practice and Problem Solving: C

1. $I+s=41 ; 22 I+14 s=710 ; 17$ large vases, 24 small vases

