\qquad
\qquad
\qquad

Lesson Transforming Quadratic Functions

Practice and Problem Solving: A/B

A parabola has the equation $f(x)=2(x-3)^{2}-4$. Complete:

1. The vertex is \qquad .
2. The graph opens \qquad .
3. The function has a minimum value of \qquad .

The following graph is a translation of $y=x^{2}$. Use it for 4-6.
4. What is the horizontal translation?
5. What is the vertical translation?

6. What is the quadratic equation for the graph? \qquad
Graph the following parabolas.
7. $y=-2(x+1)^{2}+2$
8. $y=\frac{1}{2}(x-2)^{2}-3$

A ball follows a parabolic path represented by $f(x)=-2(x-5)^{2}+9$. Use this equation for 9-12.
9. What is the vertex? \qquad
10. What is the axis of symmetry? \qquad
11. Find two points on either side of the axis.
\qquad and \qquad

12. Graph the parabola.
3. The graph of $g(x)$ is a parabola that opens downward and has the same width as the graph of $f(x)=x^{2}$. Possible explanation: The expression $-x^{2}$ is equivalent to $-1 x^{2}$, and so the value of a is -1 . Since the value of a is negative, the graph is the reflection of $f(x)=x^{2}$ when it is reflected across the x-axis. That is the reason the graph of $g(x)$ opens downward. For every x, the value of $g(x)$ is the opposite of the value of $f(x)$. That is the reason the graph of $g(x)$ has the same width as the graph of $f(x)$.

LESSON 19-2

Practice and Problem Solving: A/B

1. $(3,-4)$
2. up
3. -4
4. 2
5. -4
6. $y=(x-2)^{2}-4$
7.

8.

9. $(5,9)$
10. $x=5$
11. $(4,7)$ and $(6,7)$
12.

Practice and Problem Solving: C

1. $(3,4)$
2. down
3. 4
4. -3
5. 2
6. positive
7. $y=(x+3)^{2}+2$
8.

9.

10. $(4,8)$
11.

12. At $x=2$ and $x=6$ the ball is at $y=0$ or ground level.

Practice and Problem Solving: Modified

1. 3 to the right
2. down 4
3. $(3,-4)$
