1. Which one is not a quadratic equation?
a. $y=3 x^{3}+2 x^{2}-2$
b. $y=3 x^{2}$
c. $4 x^{2}+y=2$
2. State the vertex, axis of symmetry, and the maximum or minimum values of the following functions (the first one is done for you):
a. $f(x)=x^{2}-3$

Vertex: $(0,-3)$
Axis of symmetry: $x=0$
Minimum value= -3 (because graph opens up)
b. $f(x)=2(x+2)^{2}-5$
c. $f(x)=-3(x-7)^{2}$
d. $f(x)=\frac{1}{2}(x+4)^{2}+4$
3. Describe the transformations of the graphs compared to $f(x)=x^{2}$. (the first one is done for you)
a. $f(x)=-\frac{1}{3}(x-4)^{2}-3$

Reflection across the x axis (opens down)
Vertical compression of $1 / 3$
Shift right 4, shift down 3
b. $f(x)=2(x+2)^{2}-5$
c. $f(x)=-3(x-7)^{2}$
d. $f(x)=\frac{1}{2}(x+4)^{2}+4$
4. Graph the following Functions. State the domain and range

$$
y=2 x^{2}
$$

$y=\frac{1}{2}(x+4)^{2}-1$

$y=-2(x-4)^{2}-3$

5. Rewrite to standard form. Find the axis of symmetry. Find the vertex.
a. $y+3 x^{2}=6 x-4$

$$
y=-3 x^{2}+6 x-4
$$

To find axis of symmetry: $x=-\frac{b}{2 a}$

$$
\begin{aligned}
x & =\frac{-6}{2(-3)} \\
x & =1 \text { axis of symmetry }
\end{aligned}
$$

Plug $x=1$ into equation to find y

$$
\begin{aligned}
& y=-3(1)^{2}+6(1)-4 \\
& y=-3+6-4 \\
& y=-1
\end{aligned}
$$

Vertex: $(1,-1)$
b. $y-4 x=x^{2}+20$
c. $y=5 x^{2}-30 x+10$
6. Rewrite vertex form to standard form. (first one is done for you)
a. $y=-2(x-3)^{2}+4$

$$
\begin{aligned}
& y=-2\left(x^{2}-6 x+9\right)+4 \\
& y=-2 x^{2}+12 x-18+4 \\
& y=-2 x^{2}+12 x-14
\end{aligned}
$$

b. $y=3(x+2)^{2}-7$
c. $y=-5(x-1)^{2}+11$
7. Write the equation from the graph

